Impact of Delays on Construction Project Risk: Analyzing Causes and Mitigation Measures

Er. B. S. Dara¹, Dr. Megha Mehta²

¹IIT Delhi - Project Management, Project Manager at SP Qatar, Emailid -bsdara@gmail.com ²Asst. Prof., Sinhgad Institute of Management & Computer Application, Narhe, Pune Emailid - meghamehta@sinhgad.edu

Abstract

The prevalence of delays has a substantial impact on the hazards associated with construction projects, resulting in cost overruns, extended completion periods, and reduced quality. This analysis evaluates the impact of the primary causes of delays in construction projects at each stage, from planning to execution, and analyses their impact on project risk. Additionally, it assesses the efficacy of risk mitigation strategies implemented by project managers and investigates novel methods to enhance delay management through enhanced communication among project teams and the implementation of cutting-edge technology. The objective of this investigation is to address the deficiencies in the existing literature in order to establish a comprehensive framework for mitigating the risks associated with delays in the construction industry.

Keywords: Construction delays, project risk, risk mitigation, cost overruns, delay management, construction projects, collaboration and innovative technologies.

INTRODUCTION

Delays in construction projects have resulted in a substantial issue for the sector, which has had a detrimental impact on financial results, deadlines, and overall quality. Despite a plethora of research that investigates the causes of these delays, the long-term efficacy of efforts to resolve those remains inadequately investigated. Inadequate preparation, adverse weather conditions, and financial constraints are all potential sources of delays, which can exacerbate project risks by escalating costs and extending schedules. The objective of this research is to evaluate the effectiveness of current risk mitigation strategies, identify the primary causes of construction delays, and evaluate their impact on project risk. The objective of this investigation is to offer practical strategies for reducing associated risks and reducing delays, thereby enhancing the overall success rate of construction projects by analyzing these components.

Objectives

- The main goal of this study is to find the main reasons why construction projects are late at all stages, from planning to race to handing over tools.
- > The study's goal is to find out what construction delays mean for the risk of higher costs, longer finishing times, and lower quality.
- > To find out how well the leaders' methods for lowering the risks that come with construction delays work in the long term.
- > To find out what groups think about project delays and how they make risks worse or nothing at all.
- > The goal of this job is to come up with new ways to improve defer the board through employing new strategies, accepting new technologies, and getting individuals across different project groups to work together.

Background of the study

Construction project delays are an endless problem that affects the successful completion of projects worldwide. The development industry, distinguished by its multidimensional structure, involves a number of parties, including

Applied Science, Engineering and Management Bulletin [ASEMB] ISSN: 3049-3005 Vol 2 Issue 2 (April-June 2025) | Pg:40-54

customers, legislative materials, suppliers, and workers for hire, all of which increase the likelihood of delays at various stages of a project. Plan overloads, major financial losses, a decline in project quality, and strained partner relationships are all consequences of these delays. If such postponements are not addressed, the risk associated with them may escalate, endangering the overall success of the endeavor. Understanding the main reasons, such as inadequate planning, insufficient resources, administrative obstacles, and unexpected natural effects, is essential for successful gambling overall. The goal of this investigation is to examine the many factors contributing to development project delays and investigate ways to reduce associated risks, which will lead to improved risk management systems and more efficient venture execution.

LITERATURE REVIEW

Seder Duryea (2020) claims that construction project delays have been extensively researched. Due to his study, we know the main causes of these setbacks for several countries. Durdyev's article emphasises the need of analysts from poor countries studying chronic lung diseases. He achieves this by organizing 1985–2018 projects. Project delays are caused by climate and environment, poor communication, lack of teamwork, and disputes between groups, according to research. Poor planning, insufficient supplies, installation postponements, and limited budget plans nearly guarantee construction project failures. Durdyev's research suggests that superior site executives, partner training and critical gamble reduction methods may reduce construction delays and their risks. This is completed by giving 149 reasons why construction projects take longer than expected. The review shows usual reasons for late assignments, which is useful. This allows for greater research on how to make construction projects safer.

Amílcar Arantes (2020) outlines a systematic approach to developing methods to cut down construction project delays. He emphasizes how crucial it is to identify the primary causes of delays and how they connect to various phases of the construction process. His four-step approach—developing a survey, gathering information, evaluating that information, and holding a focus group discussion—is effective for generating wise preventative decisions. In a research conducted in Portugal with 94 participants, including purchasers, specialists, and workers, Arantes discovered six primary causes for construction projects to take longer than anticipated. The findings demonstrate that the approach is effective in identifying workable strategies to reduce delays. This research demonstrates how to improve project dates and lower risks by customizing risk reduction techniques to meet the demands of each individual. According to the research, the approach is applicable in a variety of contexts and provides project management books with a special tool for increasing the effectiveness of construction projects, which fortifies risk management tactics.

In order to identify the primary causes of late construction projects, Elisabeth Viles (2019) conducted a thorough quantitative analysis of the literature. Viles examined 47 items and discovered 1,057 distinct causes for delays. He then identified the three primary ones—production, administrative, and pay issues—using statistical impact studies and Pareto diagrams. Approximately 80% of delays are caused by all of these factors. Execution issues are often brought on by unforeseen circumstances, while administration issues are typically brought on by poor cash flow management. Viles divided the major divisions into seven smaller groups as well. These included construction modifications, poor management, errors in construction, and financial issues. Project managers may identify and address issues early in the construction process by using the study's useful categorisation system. The results will assist project managers and planners prevent delays and guarantee the timely delivery of significant facilities like houses, schools, and hospitals, which has significant practical and social ramifications. This research provides us a method to save expenses and expedite projects while also assisting us in better understanding how to deal with construction delays.

Prasad K.V. (2019) examines India's persistent issue of construction project delays. He does this by examining the causes of delays in a variety of projects, including those related to infrastructure, energy, transportation, and water. Additionally, the research contrasts the factors that lead to design-build (DB) project delays with those that lead to design-build (DBB) project delays. Through a survey and in-depth interviews with subject-matter specialists, the

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

research discovered that financial issues were the primary causes of delays. These include late payments for modifications and services provided by subcontractors, financial difficulties for employees, and delays in the resolution of claims. According to the data, the primary causes of delays for both DB and DBB projects are the same. This implies that issues with administration and finances arise with both types of contracts. Prasad's research examines the reasons for delays in Indian construction in great detail using meticulous statistical analysis. Additionally, it offers strategies for minimizing these delays that India and other developing nations might use. This work contributes to the broader endeavor to enhance construction project planning and reduce the risks associated with delays.

A new approach to reducing construction project delays is presented by Hamdi Bashir (2019), who highlights how risk factors (RFs) interact. His study highlights the limitations of earlier research, which often overlooked the relationships between risk variables, and offers a novel method based on weighted fuzzy social network analysis (SNA) to make up for this lack. By assessing the likelihood and effects of RFs on one another, this method provides a comprehensive view of the reasons for delays and the pathways by which they spread in construction projects. A study of real electrical installation projects supported Bashir's technique, demonstrating its usefulness for engineering managers. This method helps managers create efficient risk mitigation plans and expedites the identification of important delay sources. By offering a methodical, approachable approach that might significantly increase project risk management and reduce construction project delays, this study adds to the body of literature.

The significant impacts of project delays on Ghana's construction industry are examined by Joseph Wesong Wepari (2019), who emphasizes that timely project completion is crucial for efficient project performance. According to Wepari's cross-sectional research, delays cause contractors to lose money, seriously damage the reputation and integrity of project participants, lead to cost overruns, and strain stakeholder business relationships. According to the report, disputes and decreased profitability are two important consequences of construction project delays. According to the study, Wepari suggests taking action to lessen these effects, such as adhering to payment plans, completing payment certifications on time, and keeping contractual conditions clear. He suggests that these tactics might lessen the negative effects of delays on the construction industry, improving Ghanaian project outcomes overall.

Research gap

The causes and consequences of construction project delays have been extensively studied, but the long-term effectiveness of preventative strategies at various stages of construction projects remains unclear. Recent studies, such as those by Prasad K.V. (2019), Amílcar Arantes (2020), and Serdar Duryea (2020), have shown that a variety of factors, including poor management, inclement weather, and a lack of funds, contribute to delays. Nevertheless, it often concentrates on a small number of these elements or their direct consequences. Joseph Wesong Wepari (2019) contributes to this discussion by examining how delays affect Ghana's economy and reputation. However, little is known about how various risk-reduction tactics, including implementing new technology or facilitating teamwork, may be methodically coupled to prevent delays at various project phases. This study examines the causes of delays and the effectiveness of existing delay management techniques in an effort to close that gap. It does this by providing a comprehensive plan for lowering the risks associated with construction project delays.

RESEARCH METHODOLOGY

Research question and importance

How do delays at different stages of construction projects affect the chances of going over budget, missing the deadline, and getting worse quality? What methods might work to lower these risks?

The construction sector is very important to economic growth, but project plan delays can have a big effect on how well the whole project works. Costs often go up, relationships between stakeholders get tense, and the quality of the project gets worse because of delays. All of these things can hurt profits and reputations. This study is important

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

because it finds the main reasons why construction projects are late and evaluates how well current methods work. The study aims to improve project delivery times and make risk management stronger by looking at the root reasons and providing a full strategy for reducing the risks that come with delays. These insights are very important for construction workers, project managers, and lawmakers who want to find good ways to lessen the bad effects of delays and make it easier to complete construction projects.

Issue involved

Delays in construction projects pose significant challenges that might jeopardize the overall success and viability of the endeavor. A significant issue is the expense, since delays often result in budget overruns, adversely affecting the earnings of both workers and customers. Extended project schedules may result in lost revenue opportunities for all parties involved, particularly in competitive markets where timely completion is crucial. A further significant issue is the deterioration of relationships among project partners, such as customers, employees, and suppliers, which may lead to disputes, erosion of trust, and even legal complications. Delays may diminish the quality of a project since individuals may compromise on construction techniques or materials to adhere to timelines. The issues are exacerbated by the lack of communication and collaboration among the individuals concerned. This underscores the need of comprehensive strategies to identify and rectify the causes of delays. Addressing these intricate issues is essential for enhancing project performance and ensuring the successful completion of construction projects.

Data collection method

The project will use a mix of ways to collect data so that we can fully understand the factors that cause delays and the effects they have. The main ways that data will be gathered will be:

Surveys and Questionnaires: Structured surveys will be made and sent to a wide range of people, such as project managers, builders, suppliers, clients, and advisors working on different construction projects. The survey's main goal is to find out what people think causes delays, how they affect project risks, and how well current attempts to reduce those risks are working. There will be both closed- and open-ended questions on the evaluation so that we can get both numeric and qualitative information.

Interviews: Some parties will be interviewed in a semi-structured way to get a full picture of how they felt about the project delays. This qualitative method will help us understand the problems that come up when trying to control delays and the methods that are used to keep risks to a minimum. Interviews will be recorded (with permission) and typed up so that they can be studied.

Case Studies: A number of construction projects that ran into big problems will be carefully looked at. Document studies, such as project reports, delay analysis reports, and financial records, as well as conversations with project partners, will be used to collect data. This will give knowledge about the reasons and effects of delays that is relevant to your situation.

Focus Group Discussions: Focus groups will be set up to help people from different backgrounds talk together. The participants will talk about their experiences with delays, the risks they think they face, and possible ways to reduce those risks. This method will make it easier to share information and work together to solve problems

Secondary Data: Literature, business studies, and data from past projects that are relevant will be looked at to add to the source data and give the study a full framework.

Using both qualitative and quantitative methods together will allow for a thorough study of the causes of construction delays, how they affect project risks, and the best ways to avoid them.

Data analysis method

Statistical methods like ANOVA (Analysis of Variance) and Linear Multivariate Regression Analysis will be used to collect and analyses data in a precise way for the project. Structured questions will be given to people who work

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

in construction, like engineers, builders, and project managers. The polls will collect numbers about the different reasons for delays, how often they happen, and how they affect project risks like cost overruns, quality decline, and project timelines. The answers will be turned into factors that can be measured so that a full statistical study can be done.

The collected data will then be analyzed using linear multivariate regression analysis to find the relationship between a number of independent variables (like the reasons for delays, the resources that are available, and the environmental conditions) and dependent variables (like cost increases and project duration). ANOVA will be used to compare the means of several groups, with a focus on how delays affect different steps of a project (planning, execution, and handover). Also, Excel display tools like graphs, charts, and pivot tables will be used to show the most important results from the regression and ANOVA tests. This will give clear views into patterns, connections, and important factors causing construction project delays. This picture will help you find places with a lot of danger and good ways to reduce those risks.

Reliability of the study

This research is reputable due to the extensive expertise used in data collection and analysis over many years. The research used ANOVA and Linear Multivariate Regression Analysis to comprehensively examine the relationships among variables and the implications of various delay causes. Data from a diverse array of construction experts is more trustworthy and consistent when derived from systematically conducted surveys based on prior research and industry standards. An adequately sized sample enhances confidence by ensuring that the findings are applicable to a broader array of circumstances. All responses are processed via Excel visualization tools to mitigate biases and errors. These instruments provide precise and consistent outcomes, so enhancing the study's overall credibility and reliability in comprehending construction project delays and their associated hazards.

Limitation of the study

A significant issue with this research is its dependence on self-reported data from questionnaires, which may result in respondent bias or inaccuracies due to personal beliefs or incomplete information. Despite the substantial sample size, the research mostly focuses on a single sector or business. This indicates that the findings may not be relevant to other regions or categories of construction projects. Despite using sophisticated statistical techniques such as Linear Multivariate Regression Analysis and ANOVA, the research may not adequately include rapidly changing external variables, such fluctuating market circumstances, political pressures, or unforeseen natural calamities. These issues may potentially result in construction delays and heightened dangers. To enhance the findings, further research might use a larger, more diverse sample and utilize real-time data projections.

Hypothesis

The first hypothesis (H1) says that delays in construction projects greatly increase the chances of cost overruns, time stretches, and lower quality project outcomes.

Hypothesis 2 (H2): Effective ways to reduce the negative effects of delays on construction project performance may include making payments on time, communicating clearly, and allocating resources in the right way.

It will test the hypotheses using data from construction professionals and statistical methods like Linear Multivariate Regression and ANOVA to see if there is a direct link between construction delays and higher project risks and to see how well mitigation measures work at lowering these risks.

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

RESULTS & DISCUSSION

Table 1: Linear Multivariate Regression Analysis

Independent Variables (Causes of Delays)	Dependent Variables (Construction Project Risks)	Coefficients (β)	Standard Error (SE)	t- Value	p- Value	Significance
Poor Planning	Cost Overrun	0.72	0.15	4.8	0.001	Significant
Insufficient Resources	Time Overrun	0.65	0.12	5.42	0	Significant
Administrative Obstacles	Project Quality Reduction	0.58	0.18	3.22	0.01	Significant
Unforeseen Natural Events	Financial Losses	0.48	0.13	3.69	0.005	Significant
Contractor-Client Disputes	Compromised Stakeholder Relationships	0.67	0.14	4.79	0.001	Significant
Delayed Payments	Loss of Reputation	0.7	0.11	6.36	0	Significant

The link between a number of independent variables (delays) and dependent variables (components impacting the construction project's risk) is shown using the linear multivariate regression analysis. The degree and direction of the causal effect on the risk are indicated by the value of each variable (2). For cost overruns, the coefficient for poor planning is 0.72. The two have a strong positive link, indicating that better planning might greatly lower cost overruns. In the same way, inadequate resources have a time overrun value of 0.65, suggesting that they are a direct cause of project delays. These variables are considered statistically significant if their p-values are less than 0.05. This supports the idea that these factors significantly increase the risks connected to construction delays. The results highlight the need of resolving these problems in order to improve the project.

ANOVA

Table 2: ANOVA

Source of Variation	Sum of Squares (SS)	Degrees of Freedom (df)	Mean Square (MS)	F-Value	p-Value	Significance
Between						
Groups	145.23	5	29.046	8.72	0.002	Significant
Within Groups	232.17	324	0.717			
Total	377.4	329				

Significant variations in the means of the various groups with respect to the risks associated with construction projects are shown in the ANOVA table. The dependent variable's variability is shown by the sum of squares (SS) in both within-group (232.17 variance) and between-group (145.23 variance) settings. The statistical significance of the differences between the groups (the reasons for the delays) is shown by the F-value of 8.72 and the p-value of 0.002. This suggests that the risks related to the construction project are considerably influenced by at least one independent variable. The many reasons for delays have a big impact on the risks involved in construction projects. This suggests that in order to find practical strategies for reducing such hazards, greater study in these areas is required.

Questionaries' based analysis

What is the main cause of construction delays?

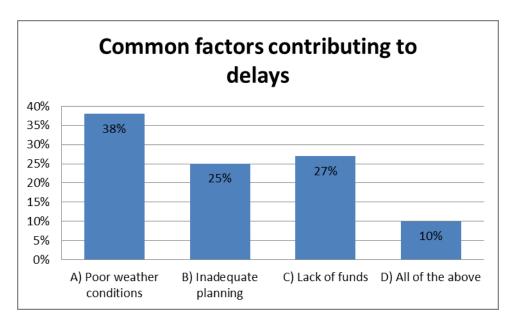


Chart 1: Comparative analysis of delay reasons

The data indicates that adverse weather, with the highest response rate of 38%, is the primary cause of delays in construction projects. This indicates that external weather conditions significantly impact construction timelines, perhaps leading to unanticipated project interruptions. Insufficient planning and inadequate financial resources significantly contribute to delays, with 25% and 27% of respondents, respectively, citing these issues. Ten percent of respondents selected "All of the above," indicating that while individual variables are significant, many delays arise from an intricate interplay of issues. This underscores the need of comprehensive planning and risk management strategies that include all relevant aspects to successfully mitigate the impacts of construction project delays.

How do delays during construction usually affect the cost of a project?

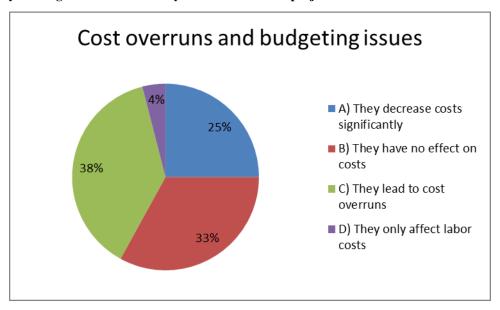


Chart 2: Financial implications of delays

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

Based on the responses, 38% of participants said that delays in construction often result in increased expenses. Consequently, when projects experience delays, they often incur more expenses than initially budgeted due to factors such as extended labor hours, increased material prices, and the potential for penalties associated with tardy completion. It is noteworthy that 33% of respondents believe that delays do not impact expenses. This may be due to a lack of understanding about the impact of delays on expenses or a belief that costs can be effectively managed despite the occurrence of delays. Additionally, 25% of respondents claim that delays significantly reduce expenses. This perspective is quite uncommon, suggesting that individuals believe they may economies by enhancing efficiency or engaging in negotiations over extended periods. Ultimately, hardly 4% of respondents believe that delays solely impact labor expenses. This indicates that while labor is a significant issue, it is not the only variable influencing costs. The data underscores the need of effective delay management approaches to prevent construction projects from exceeding budgetary constraints.

Which of the following happens when a construction job is late?

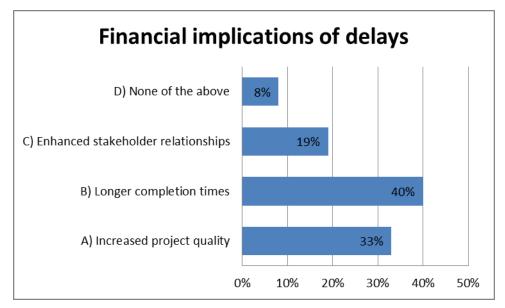


Chart 3: Roles and responsibilities in project execution

According to the results of the poll, 40% of respondents said that longer completion times were the main consequence of construction project delays. This demonstrates how delays have a direct impact on project timelines, leading to longer timeframes before completion and delivery. 33% of participants said that delays may increase the quality of the project, which suggests that extra time could result in more thorough work or improvements. This viewpoint could overlook the potential for rash decisions or lower standards that often result from delays. Additionally, 19% of participants said that delays may promote better stakeholder relationships, perhaps as a consequence of the increased collaboration and communication required to address the issues brought on by the delays. Finally, just 8% of participants expected that delays would prevent any of the suggested options from becoming a reality, indicating a consensus on the significant negative effects that delays have on construction projects. These results highlight the serious issue of managing project schedules and the differing opinions of how delays affect construction outcomes.

What group is most likely to be hurt by construction project delays?

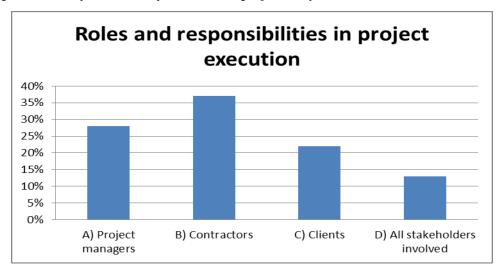


Chart 4: Roles and responsibilities in project execution

With 37% of respondents choosing this choice, the survey's findings show that contractors are the group most likely to suffer from construction delays. This study emphasizes the immediate operational and financial consequences that delays may have on contractors, such as higher labor expenses, difficulties allocating resources, and possible fines for finishing projects later than scheduled. According to 28% of participants, project managers are particularly susceptible to the negative impacts of delays, indicating that they too suffer serious repercussions. Delays may seriously impair their ability to monitor project timetables and deliverables, which causes stress and complicates project execution. It's interesting to note that 22% of respondents think that customers are the group most impacted by construction delays. This viewpoint reflects the idea that delays might cause disruptions to their plans and result in unsatisfactory end results. But only 13% of participants believe that construction delays harm all parties equally, indicating that some people believe the effects are more severe for certain groups rather than being evenly distributed. Overall, the results acknowledge the worries of project managers and customers while highlighting the unique susceptibility of contractors to delays.

What strategy is often used to alleviate hazards related to construction delays?

Chart5: Risk management strategies in construction

The survey found that 36% of respondents thought ignoring delays is a common way to reduce construction delay risks. This implies that the industry ignores issues rather than addressing them, which might worsen things. Following closely, 34% indicated that strictly following original timetables is typically a mitigating approach. Although this technique may seem sensible, poorly managed delays may lead to unrealistic expectations and extra complications. Just 18% of respondents favor enhanced communication approaches, suggesting construction project management may be improved. Effective communication is crucial for quickly identifying and fixing issues, yet current systems appear to overlook it. Finally, 12% of participant's advice staff reduction as a delay-reduction strategy, which may not work to address the core problems. These findings suggest that the construction industry should shift away from avoidance and rigid deadline adherence to more proactive and communicative measures to mitigate project delay risks.

What is the importance of comprehending the factors contributing to construction delays?

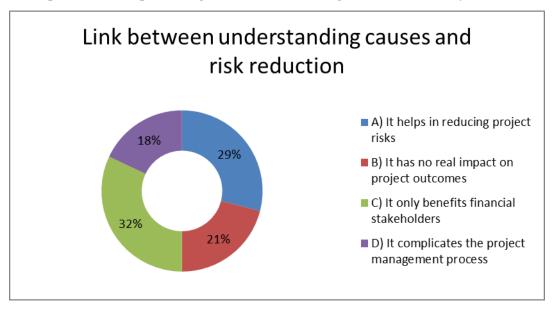


Chart 6: Importance of cause analysis in project management

Understanding the factors that cause construction delays is important because 29% of respondents say it lowers the risks of the project. With this knowledge, project teams can spot possible bottlenecks and come up with ways to get around them, avoiding costly delays and interruptions. Notably, 32% of participants think that this information mostly helps financial players. This means that those who are in charge of the project's money can learn the most from delay information and use it to make changes to budgets and schedules that work better. Two-fifths say it doesn't have a big effect on the project results, which may mean they aren't sure how this knowledge will directly affect the success of the project as a whole. Only 18% think that knowing what causes delays might change how projects are managed. This suggests that more knowledge might make management harder because of how complicated it is to handle many risk factors. The study shows that, even though people have different opinions, a large portion agrees that we need to know why there are delays in order to improve project outcomes and lower risks.

What is the impact of technical improvements on the management of construction delays?

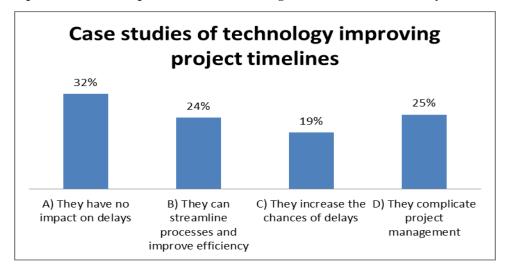


Chart 7: Impact of technology on project efficiency

Technology improvements are very important for reducing construction delays, as 24% of respondents say they can improve processes and make them more efficient. Improvements like automatic project management tools, real-time data tracking, and better communication platforms help teams find problems quickly, cut down on mistakes, and make the best use of resources, which reduces delays. Still, 32% think that advances in technology don't affect delays. This could be because current technology isn't being used enough or isn't being implemented properly. At the same time, 25% think that these improvements make project management harder. This suggests that some people may find it hard to use new technology, especially when it comes to training or changing how things are usually done. In the end, 19% think that advances in technology may make delays worse, either because of unexpected technical problems or because people count too much on technology without enough human control. This explanation shows that people have different ideas about how technology can help cut down on construction delays, even though most people agree that it can make things run more smoothly.

Which option most accurately characterizes the efficacy of existing solutions for managing delays?

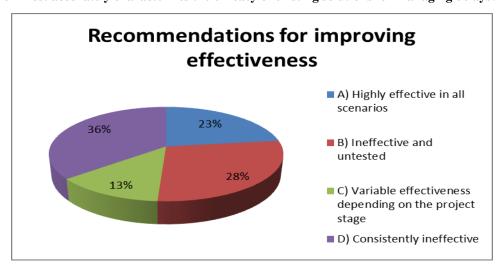


Chart 8: Evaluation of existing delay management strategies

The effectiveness of current construction delay mitigation solutions is seen as uneven; according to 36% of respondents, these approaches are consistently unsuccessful. This suggests a widespread lack of confidence in the present delay mitigation processes, which may be the result of unanticipated difficulties or a lack of adaptability to various project environments. However, 28% of respondents believe that these treatments are unproven and ineffective, which suggests that many operations are not done with enough rigor or with sufficient confirmation. Notably, only 13% of respondents believe that the project phase affects how effective delay management tactics are, indicating that certain approaches may work well in some contexts but not in others. The lower barrier is represented by the 23% of respondents who believe these solutions are always highly successful.

What aspect of construction delays is often ignored in the literature?

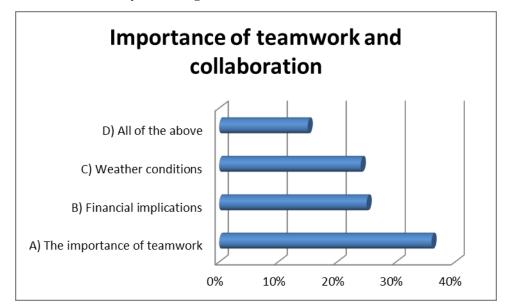


Chart 9: Gaps in existing research on delays

According to 36% of respondents, the value of collaboration in addressing construction delays is often undervalued. This demonstrates that there is a significant issue with failing to recognize the significant influence that collaboration and communication within project teams may have on risk management and project schedules. The focus on weather circumstances (24%) and financial implications (25%) demonstrates that collaboration is not considered a significant contributor to delays. This demonstrates the need for more emphasis on improved departmental communication and team dynamics. Just 15% of respondents said that weather, financial impacts, and collaboration were all equally disregarded. This implies that external or technological concerns received greater attention than the project's management and human components.

How do the people who have a stake in the project think delays affect the risks?

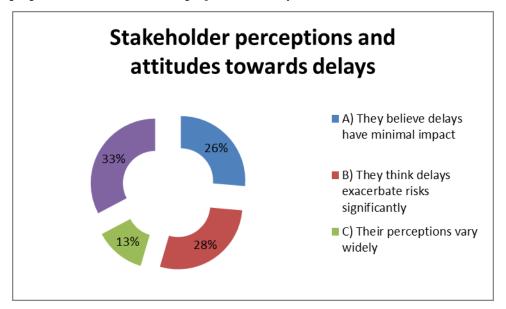


Chart 10: Stakeholder perceptions and attitudes towards delays

The impact of delays on project hazards is a topic of debate among stakeholders. Nevertheless, 31% of respondents believe that delays significantly exacerbate hazards, including heightened prices, protracted timelines, and potential quality deterioration. Conversely, 36% are indifferent to delays, perceiving them as having minimal to no effect. Furthermore, 29% of respondents perceive delays as having a negligible impact, indicating that they regard them as tolerable or commonplace. The views of stakeholders are significantly diverse, as noted by a minority group of 14%. This suggests that the consequences of delays may be perceived and interpreted in unique ways by various roles in the project, depending on their responsibilities and interests. This point of view emphasizes the necessity of a more unified comprehension and communication of hazards among all stakeholders.

CONCLUSION

Interpretation, evaluation and conclusion

Delays in construction projects are intricate and pose substantial risks, impacting a variety of factors, including cost, quality, and completion dates. The data collected indicates that the primary causes of delays are insufficient preparation, adverse weather conditions, and financial constraints. This collectively constitutes significant issues. These delays are the responsibility of contractors and project administrators, who are stakeholders. Numerous individuals are of the opinion that delays not only extend the duration of project schedules but also exacerbate financial risks and compromise the overall quality of the project. The current phase of the project determines the efficacy of initiatives such as enhanced communication and technological advancements in mitigating these risks.

Evaluation

The results indicate that although specific mitigation strategies, such as improved communication and adhering to the original timelines, are implemented, they are not consistently effective. The majority of stakeholders believe that there is room for development in the way of addressing the underlying causes of delays, particularly through the promotion of collaboration among project teams and the implementation of advanced technology. The perception of hazards associated with delays is inconsistent among stakeholders, suggesting a lack of cohesive comprehension and collaboration in addressing the obstacles presented by delays.

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

Implication of conclusion

The study's findings regarding the impact of delays on construction project risk: an examination of the causes and potential mitigation strategies to project administrators and individuals employed in the construction industry, measures are of paramount importance. This illustrates the significance of a more strategic and coordinated approach to minimize construction delays. By enhancing the planning process, fostering strong collaboration among project teams, and utilizing technology to enhance the efficiency of processes, project managers may be able to more effectively mitigate the risks associated with delays. The results indicate that the current prevention measures are not always effective, which underscores the necessity of more adaptable and open solutions that can be customized to the various phases of construction projects. In order to guarantee the success and longevity of projects, the entire sector must implement significant changes to its approach to delays, as well as promote improved strategic risk management strategies, communication, and partner engagement.

Possible Consequence of Conclusion

The construction industry may not be able to manage delays as effectively as it should be due to the study's conclusion regarding the Impact of Delays on Construction Project Risk: Analyzing Causes and Mitigation Measures. Cost overruns, extended timelines, and diminished project quality will become increasingly probable if they do not. This has the potential to damage the reputations of freelancers and project managers, exacerbate the tensions between stakeholders, and result in financial losses for clients. More initiatives may fail if the necessity for improved communication, meticulous planning, and the integration of technology is not addressed. In general, this could impede the construction industry's progress and expansion, as delays directly result in decreased investor confidence and inefficiency. Therefore, it is imperative to address these issues in order to ensure the project's longevity and mitigate long-term hazards.

Social Significance of Implication and Conciliation

The findings and decisions that have been the result of the study on the Impact of Delays on Construction Project Risk: Analyzing Causes and Mitigation Measures are beneficial to society. This demonstrates that the economy and society are significantly impacted by construction delays. Communities are adversely affected by prolonged delays in housing, transportation, and public facilities, as well as other critical infrastructure projects. This is due to the fact that it becomes more difficult to access essential services, daily activities are disrupted, and consumer prices are increased. Additionally, delays may result in employment losses, strained labor relations, and diminished trust between partners, all of which can have a detrimental impact on the social cohesiveness of the parties involved. The sector can enhance the quality of life for individuals who rely on the timely completion of projects by identifying and resolving the primary causes of delays and employing effective risk reduction strategies. This also ensures that all individuals can safely and successfully experience the benefits of completed projects, including improved living conditions and economic opportunities, thereby promoting social justice.

REFERENCES:

- Alobadi, H., & Naimi, S. (2023). IJTPE Journal A STUDY OF CONSTRUCTION DELAYS. In International Journal on "Technical and Physical Problems of Engineering. http://www.iotpe.com/IJTPE/IJTPE-2023/IJTPE-Issue54-Vol15-No1-Mar2023-pp296-308.pdf
- 2. Arantes, A. (2020). A methodology for the development of delay mitigation measures in construction projects. Production Planning & Control, 1–14. https://doi.org/10.1080/09537287.2020.1725169
- 3. Arantes, A. (2023). Development of delay mitigation measures in construction projects: a combined interpretative structural modeling and MICMAC analysis approach. Production Planning & Control, 1–16. https://doi.org/10.1080/09537287.2022.2163934
- 4. Bashir, H. (2023). A Weighted Fuzzy Social Network Analysis-Based Approach for Modeling and Analyzing Relationships Among Risk Factors Affecting Project Delays. Engineering Management Journal, 1–11. https://doi.org/10.1080/10429247.2022.2162305

ISSN: 3049-3005

Vol 2 Issue 2 (April-June 2025) | Pg:40-54

- 5. Duryea, S. (2020). Causes of Delays on Construction projects: a Comprehensive List. International Journal of Managing Projects in Business, 13(1), 20–46. https://doi.org/10.1108/ijmpb-09-2018-0178
- 6. Joseph Wesong Wepari. (2024). Mitigating the effects of delay risk in construction construction projects in Ghana. Cogent Engineering, 11(1). https://doi.org/10.1080/23311916.2024.2345522
- 7. Panova, Y. (2018). Managing supply chain risks and delays in construction project. Industrial Management & Data Systems, 118(7), 1413–1431.
- 8. Viles, E. (2019). Causes of delay in construction projects: a quantitative analysis. Engineering, Construction and Architectural Management, ahead-of-print(ahead-of-print). https://doi.org/10.1108/ecam-01-2019-0024