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Abstract 

Adaptive pedagogy driven by artificial intelligence (AI) has emerged as a promising paradigm to personalize 

learning pace and improve outcomes. Traditional methods provide limited insight into long-term knowledge 

retention, while existing reinforcement learning (RL) approaches often struggle with stability, convergence, and 

integrating motivational factors. These constraints reduce effectiveness in optimizing pace and sustaining learner 

engagement. The objective is to optimize instructional pace for improved knowledge retention and sustained 

motivation using a hybridized intelligent framework. An Enriched Proximal Policy mutated Recurrent Neural–

Long Short-Term Memory Network (EPP-RN-LSTM Net) is introduced, combining sequential knowledge 

representation with a stable RL policy enhanced through evolutionary mutation and auxiliary predictors. The 

framework utilizes a Recurrent Neural Network (RNN) to model temporal dependencies, Long Short-Term 

Memory (LSTM) to capture the learner's state, an Enriched Proximal Policy (EPP)-based policy to determine 

adaptive instructional actions, and mutation strategies to enhance exploration. Pedagogy learning data involving 

performance scores, engagement indicators, derived metrics, learner profiles, interaction logs, and labels for 

motivation and retention were collected. Data preprocessing using z-score normalization ensures standardized 

scaling of features. Singular Value Decomposition (SVD) reduces redundancy and highlights dominant behavioral 

patterns. The experimental results outperform baseline models, with F1-score achieves 0.92, precision of 0.94, 

and recall of 0.90 indicating reliable retention prediction, adaptive learning, and effective motivation 

optimization. EPP-RN-LSTM Net provides an advanced adaptive pedagogy mechanism capable of aligning 

learning pace with individual needs while simultaneously enhancing retention and motivation. 

Keywords: Adaptive pedagogy, knowledge retention, learner motivation, Enriched Proximal Policy mutated 

Recurrent Neural – Long Short-Term Memory Network (EPP-RN-LSTM Net), educational. 

1. Introduction 

Since the 21st century, learning approaches have changed due to societal shifts and technology breakthroughs, 

with a focus on individualized education, holistic individual development, and flexible approaches that 

incorporate learning networks, educational psychology, and cognitive science [1]. Flexible digital platforms, such 

as online, mobile, and Information and Communication Technology (ICT)-based tools, allow learners to advance 

at their own paces, improving retention of knowledge, fostering ongoing skill development, and guaranteeing 

easily available, customized training in a range of professional situations [2]. 

Traditional teaching approaches have drawbacks, such as poor collaborative learning, unequal participation, low 

social engagement, and decreased motivation. These issues delay overall academic and classroom performance, 

especially for children with learning difficulties [3]. Artificial Intelligence (AI) aids Digital Transformation of 

Education (DTE) by enabling personalized learning, strengthening teacher-student engagement, streamlining 

administration, increasing evaluation accuracy, and supporting efficient, data-driven educational management and 

governance [4]. Personalized learning encourages active involvement, metacognitive awareness, and better 

academic results by tailoring the speed, content, and teaching strategies to each student's unique requirements, 

interests, and qualities [5]. 

Research Objective  

Conventional adaptive learning systems employ static pacing, which limits personalization, retention, and 

motivation. The research aims to optimize instructional pace for improved retention and sustained engagement. 

An intelligent framework overcomes these challenges by gathering multimodal student data, applying Z-score 

normalization, and extracting essential characteristics using Singular Value Decomposition (SVD). The proposed 

Enriched Proximal Policy mutated Recurrent Neural–Long Short-Term Memory Network (EPP-RN-LSTM Net) 
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combines RNNs, LSTMs, and EPP to enable adaptive instructional activities that improve information retention, 

reduce dropout, and promote individualized learning. The key contributions include: 

• To design an intelligent learning pace optimization model integrating RNNs, LSTMs, and EPP for adaptive 

instructional actions. 

• To collect and preprocess pedagogy learning data using Z-score normalization and extract features via SVD 

for improved behavioral and performance representation. 

• To evaluate the EPP-RN-LSTM Net, demonstrating higher accuracy, stronger recall, balanced precision and 

improved learner motivation. 

The remaining sections are organized as follows: Section 1 introduces adaptive pedagogy challenges, followed by 

a review of related studies in Section 2, the EPP-RN-LSTM Net methodology is explained in Section 3, results 

and discussion are presented in Section 4, and conclusions with future directions are discussed in Section 5. 

2. Related works 

For online learning, an entropy-enhanced Proximal Policy Optimization (PPO) algorithm and Attentive 

Knowledge Tracing (AKT) were employed to develop an adaptive learning path navigation (ALPN) system [6]. 

Despite the computational challenges, the results demonstrated better learning outcomes and more diverse, 

individualized learning paths. A generative AI-based personalized adaptive learning (PAL) system with a diffusion 

model was presented to improve deep knowledge tracing (DKT) [7]. Despite issues with data scarcity, the results 

showed better prediction accuracy and more useful recommendations for personalized learning. Engineering 

classes used an adaptive learning technique that included micro-learning, flipped classrooms, and self-regulated 

learning [8]. Despite the methodological complexity, the results demonstrated better student learning, engagement, 

and the development of disciplinary and transversal competencies. 

An Attention-aware convolutional Stacked bidirectional long Short-Term memory (BiLSTM) network (ASIST) 

designed to predict student performance [9]. The results showed better representation learning, precise 

categorization, and improved early identification of at-risk learners with the variable performance of the datasets. 

An Actor-Critic framework-enhanced Deep Neural Network (EDNN) was suggested for optimizing individualized 

learning paths [10]. The results showed enhanced accuracy, more adaptability, and faster convergence in learning 

path suggestions despite integration constraints. 

Despite advancements in AI-driven adaptive learning, certain challenges remain. Entropy-enhanced PPO with 

AKT improves learning path variation while posing computational hurdles [6]. Diffusion model-based PAL 

improves knowledge traceability but suffers from data scarcity [7]. Micro-learning, flipped classrooms, and self-

regulated techniques increase engagement but it methodologically challenging [8]. ASIST accurately predicts 

performance but is sensitive to the dataset [9], whereas Actor-Critic EDNN improves flexibility but has integration 

restrictions [10]. Current methods prioritize accuracy but frequently lack long-term memory, motivation, and real-

time flexibility, emphasizing the importance of a unified, strong adaptive learning framework. To address such 

limitations, An EPP-RNN-LSTM Net was created by merging LSTM, RNN, and EPP to improve retention 

prediction, optimize learning pace, and increase motivation, resulting in a scalable AI-driven solution for 

personalized education. 

3. Methodology 

A hybrid AI framework simulates student behavior to maximize instructional pace. Pedagogy learning data are 

preprocessed with Z-score normalization, and essential features are retrieved using SVD. The EPP-RN-LSTM 

Net combines RNNs for short-term engagement, LSTMs for long-term retention, and EPP for adaptive behaviors, 

hence improving retention, motivation, and individualized learning results. The proposed method's overall 

procedure is depicted in Figure 1. 
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Figure 1: Methodology flow 

3.1 Data collection 

The learner data were accessed through pedagogy learning data available on Kaggle 

(https://www.kaggle.com/datasets/ziya07/multimodal-student-retention-dataset). The dataset includes 1,800 

records and 24 attributes that capture learner profiles, interaction logs, performance scores, engagement indicators, 

derived metrics, and target labels for retention and motivation. Its complete structure enables Deep Learning (DL)-

based modeling of educational behaviors, adaptive teaching tactics, retention prediction, and motivational 

optimization across a wide range of learning scenarios.  

3.2 Data Preprocessing using Z-score normalization 

Z-score normalization generates a single scale from feature data, ensuring that academic measures, demographic 

attributes, attendance habits, and advising notes contribute similarly throughout model training. Each feature is 

changed by removing its mean and dividing by its standard deviation, represented in Equation (1). 

𝑍𝑗
′ =

𝐹𝑗−𝐹

𝑆𝐹
                                                      (1) 

Where, 𝑆𝐹 denotes standard deviation, 𝐹𝑗 denotes the actual feature value, 𝐹̅ refers to the mean of all features 

across learners, and 𝑍𝑗
′ indicates the standardized value. Z-score normalization creates a consistent dataset that 

improves convergence, retention prediction, and individualized learning speed optimization by standardizing all 

features, eliminating scale biases, and highlighting relative differences in engagement and performance. 

3.3 Singular Value Decomposition (SVD) for Feature Extraction 

SVD reduces dimensionality for effective model training while identifying dominating patterns in academic 

indicators, engagement features, and learner interaction logs. Any real matrix 𝑀 can be decomposed in Equation 

(2). 

𝑀 = 𝑈 Σ VT                                                   (2) 

Where 𝑇 denotes the input data matrix, while the orthogonal matrices 𝑈 and 𝑉 represent the left and right singular 

vectors, respectively. SVD maintains invariance to scaling or rotation, stabilizes against noise, and preserves 

important components. By projecting high-dimensional learner and engagement data into a smaller singular-value 

space, important behavioral and performance cues are preserved, which enables the EPP-RN-LSTM Net to better 

predict motivation and retention, optimize instructional pacing, and capture temporal dependencies. 

3.4 Enriched Proximal Policy mutated Recurrent Neural–Long Short-Term Memory Network (EPP-RN-

LSTM Net) 

The EPP-RN-LSTM Net captures motivation and performance cues to improve retention and personalize learning, 

combining mutation-based EPP for adaptive pacing, LSTMs for long-term retention, and RNNs for short-term 

engagement. 

https://www.kaggle.com/datasets/ziya07/multimodal-student-retention-dataset
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Recurrent Neural-Long Short-Term Memory Network (RN-LSTM Net) 

The RN-LSTM Net combines RNN for sequential learner progress with LSTM Net for long-term engagement 

signals, allowing for adaptive pace, accurate retention prediction, and tailored knowledge maximization. 

RNN: RNNs handle sequential learning data, where every decision about pacing depends on previous learner 

interactions. In adaptive pedagogy, RNNs track logs like quiz performance, engagement levels, and response 

intervals to generate a temporal state based on progression trends. The recurrent update is modelled as Equations 

(3-4). 

𝑠𝑘 = 𝜙(𝐴𝑑𝑣𝑘 + 𝐵𝑑𝑠𝑘−1 + 𝑏𝑑)                                 (3) 

𝑦𝑘 = 𝜙(𝐶𝑑𝑠𝑘 + 𝑑𝑑)                                                 (4) 

where 𝑦𝑘 denotes the learner input at step 𝑘, 𝑠𝑘 is the hidden state, 𝑠𝑘−1 represents memory from the previous 

step, 𝐴𝑑, 𝐵𝑑 , and 𝐶𝑑 are trainable matrices, 𝑑𝑑, 𝑏𝑑 are biases, and 𝜙 signifies a nonlinear activation. RNNs provide 

representations that combine current learning activity with past engagement trends by updating hidden states 

across sequences, tracing progression patterns, identifying knowledge gaps, and generating adaptive pacing 

signals. 

LSTM Net: LSTM Net improves RNNs by incorporating gates that control information retention, forgetting, and 

updating, hence resolving gradient instability and enabling long-range learning dependencies. In adaptive 

pedagogy, LSTMs control how immediate engagement and historical performance are integrated for pacing 

optimization. The transition process is defined in the following Equations (5-6). 

𝑝𝑘 = 𝜎(𝐴𝑝𝑣𝑘 + 𝐶𝑝𝑠𝑘−1 + 𝑏𝑝) ,  𝑞𝑘 = 𝜎(𝐴𝑞𝑣𝑘 + 𝐶𝑞𝑠𝑘−1 + 𝑏𝑞) , 𝑟𝑘 = 𝜎(𝐴𝑟𝑣𝑘 + 𝐶𝑟𝑠𝑘−1 + 𝑏𝑟)                 (5)                                                                                                             

𝑚̃𝑘 = tanh(𝐴𝑚𝑣𝑘 + 𝐶𝑚𝑠𝑘−1 + 𝑏𝑚) ,  𝑚𝑘 = 𝑞𝑘⨀𝑚𝑘−1 + 𝑝𝑘⨀𝑚̃𝑘 ,  𝑠𝑘 = 𝑟𝑘⨀ tanh(𝑚𝑘)                          (6)                                                                                                                  

where 𝑝𝑘, 𝑞𝑘, 𝑟𝑘 represent input, forget, and output gates with corresponding biases (𝑏𝑝, 𝑏𝑞, 𝑏𝑟,𝑏𝑚), 𝑚̃𝑘 denotes 

the candidate memory, 𝑚𝑘 refers to the updated memory cell,  𝑚𝑘−1denotes previous hidden state, 𝑠𝑘 indicates 

the hidden state, and ⨀ denotes element-wise multiplication. The input and recurrent weights of matrix 𝐴 and 𝐶 

constitutes (𝐴𝑝, 𝐴𝑞, 𝐴𝑟, 𝐴𝑚) and (𝐶𝑝, 𝐶𝑞, 𝐶𝑟, 𝐶𝑚). The sigmoid and hyperbolic tangent function is indicated by 

𝜎and tanh.  LSTMs create stable temporal representations that direct instructional pacing, enhance learning 

continuity, and sustain motivational alignment across educational engagements by maintaining a balance between 

long-term retention signals and short-term engagement dynamics through gated memory updates. 

Enriched Proximal Policy (EPP) optimization 

PPO maintains instructional pacing by modifying teaching tactics using reinforcement learning; however, it is 

frequently constrained by unstable training, slow convergence, and inadequate sensitivity to motivation cues. EPP 

solves these difficulties by merging mutation-based exploration with retention and engagement factors. The PPO 

employs a clipped surrogate loss that is derived in Equations (7). 

𝐽𝑃𝑃𝑂(𝜓) = 𝔼𝑘[min( 𝜌𝑘(𝜓)𝐵𝑘 , 𝑐𝑙𝑖𝑝(𝜌𝑘(𝜓), 1 − 𝛿, 1 + 𝛿)𝐵𝑘)]                                                                      (7) 

Where 𝐽𝑃𝑃𝑂(𝜓) denotes the standard policy objective, 𝜌𝑘(𝜓) =
𝜋𝜓 (𝑢𝑘|𝑧𝑘)

𝜋𝜓−(𝑢𝑘|𝑧𝑘)
 , 𝑢𝑘 denotes adaptive pacing action, 

𝑧𝑘 indicates learner state representation, and 𝜋𝜓 refers to policy with parameters 𝜓, 𝐵𝑘 as the advantage, and 𝛿 as 

the clipping bound. EPP extends this by introducing mutation strategies and motivational predictors, which are 

expressed in Equation (8). 

𝐽𝑎𝑐𝑡𝑜𝑟
𝐸𝑃𝑃 (𝜓) = 𝐽𝑃𝑃𝑂(𝜓) + 𝛼𝑄𝑘 ,       𝐽𝑐𝑟𝑖𝑡𝑖𝑐

𝐸𝑃𝑃 (𝜂) = 𝔼𝑘 [(𝑌𝑘 − 𝑉𝔶(𝑧𝑘, 𝐻𝑘))
2

]                                                            (8) 

Where 𝐽𝑎𝑐𝑡𝑜𝑟
𝐸𝑃𝑃 (𝜓) denotes enriched actor objective with adaptive exploration and auxiliary cues, 𝑄𝑘 represents 

auxiliary motivation–retention cues, 𝛼 is a balancing coefficient, 𝑌𝑘 indicates the return, and 𝑉𝔶 denotes the value 

function with parameters 𝔶 enriched by cues 𝐻𝑘. By improving exploration, stabilizing updates, and ensure that 

pacing choices take motivation and learning performance into account, the enriched design improves retention 

and lowers dropout rates. 
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The EPP-RN-LSTM Net employs LSTM for temporal encoding, RNN for sequential modeling, and EPP for 

adaptive decisions, resulting in exact retention prediction, dynamic learning pace adjustment, and increased 

learner motivation across a variety of learning behaviors. 

4. Results and Discussion 

The EPP-RN-LSTM Net was implemented using Python 3.11 on a workstation with an Intel Core i9, 64GB RAM, 

and NVIDIA RTX 4090 GPU, enabling quick model training, simulation, and evaluation using multimodal student 

retention data. 

Accuracy is described as the fraction of accurately predicted learner outcomes among all predictions, indicating 

how accurately the model matches actual results and providing an overall measure of predictor performance. Loss 

quantifies the difference between expected and actual outcomes, which helps guide training optimization to reduce 

errors and increase prediction quality. Precision refers to the fraction of accurately identified positive outcomes, 

demonstrating reliability in detecting at-risk learners and assuring trustworthy predictions. Recall quantifies the 

fraction of true positive cases captured, monitoring sensitivity to engagement or dropout events, and enabling 

prompt responses. The F1-score integrates precision and recall into a single statistic, combining reliability and 

sensitivity, allowing for a more comprehensive evaluation of model effectiveness and improved information 

retention and motivation. 

The visualizations show EPP-RN-LSTM Net performance throughout 30 epochs. Accuracy progressively 

increases, with training at 0.98 and validation at 0.96, while loss gradually reduces. This simultaneous increase 

suggests consistent training, successful convergence, and a high predictive ability for adaptive learning, retention 

forecasting, and learner engagement optimization. The accuracy and loss progression during training and 

validation are displayed in Figure 2 (a-b). 

 

Figure 2: Training and validation (a) accuracy and (b) loss. 

The comparison of the proposed EPP-RN-LSTM Net is evaluated using Precision, Recall, and F1-score against 

Pre-trained Neural Network (NN) [11], Artificial Neural Network (ANN) [11], K-Nearest Neighbor (KNN) [11], 

Support Vector Machines (SVM) [11], Gradient Boosting [11], and Random Forest (RF) [11]. Table 1 and Figure 

3 compare EPP-RN-LSTM Net with baseline models, showing F1-score 0.92, precision 0.94, and recall 0.90, 

highlighting superior predictive accuracy, retention forecasting, and engagement optimization. 

Table 1: Model effectiveness measured by key metrics 

Methods Precision Recall F1-score 

Pre-trained NN [11] 0.88 0.74 0.80 

ANN [11] 0.81 0.79 0.80 

SVM [11] 0.84 0.85 0.84 

Gradient Boosting [11] 0.76 0.87 0.81 

RF [11] 0.82 0.80 0.81 

KNN [11] 0.88 0.74 0.80 

EPP-RN-LSTM Net [Proposed] 0.94 0.90 0.92 
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Figure 3: Comparison of model effectiveness. 

An AI-based adaptive pedagogy system based on EPP-RN-LSTM Net was created to optimize learning pace, 

improve knowledge retention, and maintain students motivation. Existing models frequently had issues with 

unstable convergence, poor temporal learning pattern modeling, and a lack of integration of engagement or 

retention cues. Pre-trained NN [11] and ANN [11] demonstrated moderate prediction performance but could not 

capture sequential learner behaviours. Although SVM [11] and Gradient Boosting [11] failed to dynamically adapt 

instruction and were susceptible to feature scale, the models offered respectable classification accuracy. RF [11] 

and KNN [11] performed well on static data but struggled to simulate time-dependent performance patterns. To 

overcome the issues, an EPP-RN-LSTM Net is established that incorporates sequential state encoding, policy-

guided adaptive decisions, and mutation-driven exploration, with retention and engagement signals refining 

predictions, resulting in a robust, flexible, and accurate learning pace and motivation. 

5. Conclusion  

An adaptive AI-driven mechanism was developed to optimize learning pace, knowledge retention, and learner 

motivation. Learning data from pedagogy, such as learner profiles, interaction logs, performance ratings, 

engagement metrics, derived metrics, and labels for motivation and retention, were collected and standardized 

using z-score normalization. Key behavioral and performance features were extracted through SVD to capture 

essential temporal patterns. The proposed EPP-RN-LSTM Net integrates RNNs for short-term engagement, 

LSTMs for long-term retention, and EPP with evolutionary mutation for adaptive instructional actions. The 

experimental findings outperformed the baseline models, with a training accuracy of 0.98, validation of 0.96, F1-

score of 0.92, precision of 0.94, and recall of 0.90, indicating reliable retention prediction, adaptive learning, and 

effective motivation optimization. Limitations included dependency on dataset size, diversity, and potential 

computational overhead for real-time deployment. Future research will explore integration with larger and more 

diverse student datasets, multimodal feedback incorporation, and reinforcement learning variants for improved 

adaptability and scalability. 
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